By Topic

Physiologically based simulation of clinical EMG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hamilton-Wright, A. ; Syst. Design Eng. Dept., Univ. of Waterloo, Ont., Canada ; Stashuk, D.W.

An algorithm that generates electromyographic (EMG) signals consistent with those acquired in a clinical setting is described. Signals are generated using a model constructed to closely resemble the physiology and morphology of skeletal muscle, combined with line source models of commonly used needle electrodes positioned in a way consistent with clinical studies. The validity of the simulation routines is demonstrated by comparing values of statistics calculated from simulated signals with those from clinical EMG studies of normal subjects. The simulated EMG signals may be used to explore the relationships between muscle structure and activation and clinically acquired EMG signals. The effects of motor unit (MU) morphology, activation, and neuromuscular junction activity on acquired signals can be analyzed at the fiber, MU and muscle level. Relationships between quantitative features of EMG signals and muscle structure and activation are discussed.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 2 )