By Topic

Optimal lattices for sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kunsch, H.R. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Goteborg, Sweden ; Agrell, E. ; Hamprecht, F.A.

The generalization of the sampling theorem to multidimensional signals is considered, with or without bandwidth constraints. The signal is modeled as a stationary random process and sampled on a lattice. Exact expressions for the mean-square error of the best linear interpolator are given in the frequency domain. Moreover, asymptotic expansions are derived for the average mean-square error when the sampling rate tends to zero and infinity, respectively. This makes it possible to determine the optimal lattices for sampling. In the low-rate sampling case, or equivalently for rough processes, the optimal lattice is the one which solves the packing problem, whereas in the high-rate sampling case, or equivalently for smooth processes, the optimal lattice is the one which solves the dual packing problem. In addition, the best linear interpolation is compared with ideal low-pass filtering (cardinal interpolation).

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 2 )