Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Terra MODIS on-orbit spatial characterization and performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoxiong Xiong ; NASA Goddard Space Flight Center, Greenbelt, MD, USA ; Nianzeng Che ; Barnes, W.

The Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model, onboard the National Aeronautics and Space Administration's Earth Observing System Terra spacecraft, has been in operation for over four years. It has 36 spectral bands and a total of 490 detectors located on four focal plane assemblies (FPAs). MODIS makes observations at three spatial resolutions (nadir): 0.25 km (bands 1-2), 0.5 km (bands 3-7), and 1 km (bands 8-36). The instrument's spatial characterization was measured prelaunch using an integration and alignment collimator. Parameters measured included the detectors' instantaneous field-of-view (IFOV), band-to-band registration (BBR), and line spread function in both the along-scan and along-track directions. On-orbit, the spatial characterization is periodically measured using the onboard spectro-radiometric calibration assembly (SRCA). This paper describes the SRCA BBR algorithms, characterization methodologies, and on-orbit results. A Fourier approach used to calculate the along-track BBR is also described. This approach enhances the algorithm's robustness in comparison with the conventional centroid approach. On-orbit results show that the Terra MODIS focal planes shifted slightly during launch and initial on-orbit operation. Since then they have been very stable. The BBR is within 0.16 km (nadir IFOV) in the along-scan direction and 0.23 km (nadir IFOV) in the along-track direction among all bands. The small but noticeable periodic variation of the on-orbit BBR can be attributed to the annual cycling of instrument temperature due to Sun-Earth distance variation. The visible FPA position has the largest temperature dependence among all FPAs, 17 m/K along-scan and 0.6 m/K along-track.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 2 )