Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Observation and characterization of radar backscatter over Greenland

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ashcraft, I.S. ; Brigham Young Univ. Microwave Earth Remote Sensing Lab., Provo, UT, USA ; Long, D.G.

Characterization of the microwave signature of the Greenland snow surface enables delineation of the different snow facies and is a tool for tracking the effects of climate change. A new empirical observation model is introduced that uses a limited number of parameters to characterize the snow surface based on the dependence of radar backscatter on incidence angle, azimuth angle, spatial gradient, and temporal rate of change. The individual model parameters are discussed in depth with examples using data from the NASA Scatterometer (NSCAT) and from the C-band European Remote Sensing (ERS) satellite Advanced Microwave Instrument in scatterometer mode. The contribution of each model term to the overall accuracy of the model is evaluated. The relative contributions of the modeled dependencies vary by region. Two studies illustrating applications of the model are included. First, interannual changes over the Greenland ice sheet are investigated using nine years of ERS data. Surface changes are observed as anomalies in the σ° model parameters. Second, intraannual variations of the surface are investigated. These changes are observed in the average backscatter normalized to a given observation geometry. The results indicate that the model can be used to obtain a more complete understanding of multiyear change and to obtain low-variance high temporal resolution observations of intraannual changes. The model may be applied for increased accuracy in scatterometer, synthetic aperture radar (SAR), and wide-angle SAR studies.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 2 )