By Topic

A cognitive architecture for Robotic hand posture learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Infantino, I. ; Inst. di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, ICAR-CNR, Palermo, Italy ; Chella, A. ; Dindo, H. ; Macaluso, I.

This paper deals with the design and implementation of a visual control of a robotic system composed of a dexterous hand and video camera. The aim of the proposed system is to reproduce the movements of a human hand in order to learn complex manipulation tasks or to interact with the user. A novel algorithm for robust and fast fingertips localization and tracking is presented. A suitable kinematic hand model is adopted to achieve a fast and acceptable solution to an inverse kinematics problem. The system is part of a cognitive architecture for posture learning that integrates the perceptions by a high-level representation of the scene and of the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces, and to perform complex interactions with the human operator.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 1 )