By Topic

Reinforcement learning-based output feedback control of nonlinear systems with input constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
He, P. ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Rolla, MO, USA ; Jagannathan, S.

A novel neural network (NN)-based output feedback controller with magnitude constraints is designed to deliver a desired tracking performance for a class of multi-input and multi-output (MIMO) strict feedback nonlinear discrete-time systems. Reinforcement learning is proposed for the output feedback controller, which uses three NNs: 1) an NN observer to estimate the system states with the input-output data, 2) a critic NN to approximate certain strategic utility function, and 3) an action NN to minimize both the strategic utility function and the unknown dynamics estimation errors. Using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the state estimation errors, the tracking errors and weight estimates is shown.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 1 )