Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xia, Y.S. ; Nanjing Univ. of Posts & Telecommun., China ; Gang Feng ; Jun Wang

This paper proposes a primal-dual neural network with a one-layer structure for online resolution of constrained kinematic redundancy in robot motion control. Unlike the Lagrangian network, the proposed neural network can handle physical constraints, such as joint limits and joint velocity limits. Compared with the existing primal-dual neural network, the proposed neural network has a low complexity for implementation. Compared with the existing dual neural network, the proposed neural network has no computation of matrix inversion. More importantly, the proposed neural network is theoretically proved to have not only a finite time convergence, but also an exponential convergence rate without any additional assumption. Simulation results show that the proposed neural network has a faster convergence rate than the dual neural network in effectively tracking for the motion control of kinematically redundant manipulators.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 1 )