By Topic

A region dissimilarity relation that combines feature-space and spatial information for color image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Makrogiannis, S. ; Comput. Sci. & Eng. Dept., Wright State Univ., Dayton, OH, USA ; Economou, G. ; Fotopoulos, S.

This paper proposes a methodology that incorporates principles from cluster analysis and graph representation to achieve efficient image segmentation results. More specifically, a feature-based, inter-region dissimilarity relation is considered here in order to determine the dissimilarity matrix in a graph-based segmentation scheme. The calculation of the dissimilarity function between adjacent elementary image regions is based on the proximity of each region's feature vector to the main clusters that are formed by the image samples in the feature space. In contrast to typical segmentation approaches of the literature, the global feature space information is included in the spatial graph representation that was derived from the initial Watershed partitioning. A region grouping process is applied next to form the final segmentation results. The proposed approach was also compared to approaches that use feature-based, or spatial information exclusively, to indicate its effectiveness.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 1 )