By Topic

Execution cache-based microarchitecture for power-efficient superscalar processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Talpes, E. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Marculescu, D.

This paper investigates a possible solution to the problem of power consumption in superscalar, out-of-order processors by proposing a new microarchitecture, specifically designed to reduce increasing power requirements of high-end processors. More precisely, we show that by modifying the well-established superscalar processor architecture, significant savings can be achieved in terms of power consumption. Our approach aims at limiting the growing amount of power used in a typical processor for dynamic optimizations (including out-of-order scheduling and register renaming). Our proposed approach achieves significant power savings by reusing as much as possible from the work done by the front-end of a typical superscalar, out-of-order pipeline, via the use of a special cache nested deeply into the processor structure. By reusing instructions that are already decoded, reordered, and have their registers already renamed, the front end of the pipeline can be turned off for large periods of time with significant savings in the overall power consumption. Experimental results show up to 35% (30% on average) savings in average energy per committed instruction, and 35% (20% on average) savings in energy-delay product, with about 9% average performance loss, over a large spectrum of SPEC95 and SPEC2000 benchmarks.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 1 )