Cart (Loading....) | Create Account
Close category search window
 

A speech/music discriminator based on RMS and zero-crossings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Panagiotakis, C. ; Dept. of Comput. Sci., Univ. of Crete, Heraklion, Greece ; Tziritas, G.

Over the last several years, major efforts have been made to develop methods for extracting information from audiovisual media, in order that they may be stored and retrieved in databases automatically, based on their content. In this work we deal with the characterization of an audio signal, which may be part of a larger audiovisual system or may be autonomous, as for example in the case of an audio recording stored digitally on disk. Our goal was to first develop a system for segmentation of the audio signal, and then classification into one of two main categories: speech or music. Among the system's requirements are its processing speed and its ability to function in a real-time environment with a small responding delay. Because of the restriction to two classes, the characteristics that are extracted are considerably reduced and moreover the required computations are straightforward. Experimental results show that efficiency is exceptionally good, without sacrificing performance. Segmentation is based on mean signal amplitude distribution, whereas classification utilizes an additional characteristic related to the frequency. The classification algorithm may be used either in conjunction with the segmentation algorithm, in which case it verifies or refutes a music-speech or speech-music change, or autonomously, with given audio segments. The basic characteristics are computed in 20 ms intervals, resulting in the segments' limits being specified within an accuracy of 20 ms. The smallest segment length is one second. The segmentation and classification algorithms were benchmarked on a large data set, with correct segmentation about 97% of the time and correct classification about 95%.

Published in:

Multimedia, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.