Cart (Loading....) | Create Account
Close category search window
 

Affective video content representation and modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanjalic, A. ; Dept. of Mediamatics, Delft Univ. of Technol., Netherlands ; Li-Qun Xu

This paper looks into a new direction in video content analysis - the representation and modeling of affective video content . The affective content of a given video clip can be defined as the intensity and type of feeling or emotion (both are referred to as affect) that are expected to arise in the user while watching that clip. The availability of methodologies for automatically extracting this type of video content will extend the current scope of possibilities for video indexing and retrieval. For instance, we will be able to search for the funniest or the most thrilling parts of a movie, or the most exciting events of a sport program. Furthermore, as the user may want to select a movie not only based on its genre, cast, director and story content, but also on its prevailing mood, the affective content analysis is also likely to contribute to enhancing the quality of personalizing the video delivery to the user. We propose in this paper a computational framework for affective video content representation and modeling. This framework is based on the dimensional approach to affect that is known from the field of psychophysiology. According to this approach, the affective video content can be represented as a set of points in the two-dimensional (2-D) emotion space that is characterized by the dimensions of arousal (intensity of affect) and valence (type of affect). We map the affective video content onto the 2-D emotion space by using the models that link the arousal and valence dimensions to low-level features extracted from video data. This results in the arousal and valence time curves that, either considered separately or combined into the so-called affect curve, are introduced as reliable representations of expected transitions from one feeling to another along a video, as perceived by a viewer.

Published in:

Multimedia, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.