By Topic

Multilevel Quadratic Variation Minimization for 3D Face Modeling and Virtual View Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

One of the key remaining problems in face recognition is that of handling the variability in appearance due to changes in pose. One strategy is to synthesize virtual face views from real views. In this paper, a novel 3D face shape-modeling algorithm, Multilevel Quadratic Variation Minimization (MQVM), is proposed. Our method makes sole use of two orthogonal real views of a face, i.e., the frontal and profile views. By applying quadratic variation minimization iteratively in a coarse-to-fine hierarchy of control lattices, the MQVM algorithm can generate C²-smooth 3D face surfaces. Then realistic virtual face views can be synthesized by rotating the 3D models. The algorithm works properly on sparse constraint points and large images. It is much more efficient than single-level quadratic variation minimization. The modeling results suggest the validity of the MQVM algorithm for 3D face modeling and 2D face view synthesis under different poses.

Published in:

Multimedia Modelling Conference, 2005. MMM 2005. Proceedings of the 11th International

Date of Conference:

12-14 Jan. 2005