By Topic

Predicting inter-thread cache contention on a chip multi-processor architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dhruba Chandra ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Fei Guo ; Seongbeom Kim ; Solihin, Y.

This paper studies the impact of L2 cache sharing on threads that simultaneously share the cache, on a chip multi-processor (CMP) architecture. Cache sharing impacts threads nonuniformly, where some threads may be slowed down significantly, while others are not. This may cause severe performance problems such as sub-optimal throughput, cache thrashing, and thread starvation for threads that fail to occupy sufficient cache space to make good progress. Unfortunately, there is no existing model that allows extensive investigation of the impact of cache sharing. To allow such a study, we propose three performance models that predict the impact of cache sharing on co-scheduled threads. The input to our models is the isolated L2 cache stack distance or circular sequence profile of each thread, which can be easily obtained on-line or off-line. The output of the models is the number of extra L2 cache misses for each thread due to cache sharing. The models differ by their complexity and prediction accuracy. We validate the models against a cycle-accurate simulation that implements a dual-core CMP architecture, on fourteen pairs of mostly SPEC benchmarks. The most accurate model, the inductive probability model, achieves an average error of only 3.9%. Finally, to demonstrate the usefulness and practicality of the model, a case study that details the relationship between an application's temporal reuse behavior and its cache sharing impact is presented.

Published in:

High-Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium on

Date of Conference:

12-16 Feb. 2005