By Topic

Hybrid Image Registration based on Configural Matching of Scale-Invariant Salient Region Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaolei Huang ; Rutgers University, Piscataway, NJ ; Yiyong Sun ; Metaxas, D. ; Sauer, F.
more authors

We present a novel method for aligning images under arbitrary poses, based on finding correspondences between image region features. In contrast with using purely feature-based or intensity-based methods, we adopt a hybrid method that integrates the merits of both approaches. Our method uses a small number of automatically extracted scale-invariant salient region features, whose interior intensities can be matched using robust similarity measures. While previous techniques have primarily focused on finding correspondences between individual features, we emphasize the importance of geometric configural constraints in preserving global consistency of individual matches and thus eliminating false feature matches. Our matching algorithm consists of two steps: region component matching (RCPM) and region configural matching (RCFM), respectively. The first step finds correspondences between individual region features. The second step detects a joint correspondence between multiple pairs of salient region features using a generalized Expectation-Maximization framework. The resulting joint correspondence is then used to recover the optimal transformation parameters. We applied our method to registering a pair of aerial images and several pairs of single and multiple modality medical images with promising results. The preliminary results, in particular, showed that the proposed method has excellent robustness to image noise, intensity change and inhomogeneity, appearance and disappearance of structures, as well as partial matching.

Published in:

Computer Vision and Pattern Recognition Workshop, 2004. CVPRW '04. Conference on

Date of Conference:

27-02 June 2004