By Topic

Topological search in automated mechatronic system synthesis using bond graphs and genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianjun Hu ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Goodman, E. ; Rosenberg, R.

We have introduced a well-defined scalable benchmark problem - the eigenvalue placement problem - to investigate scalability issues in automated topology synthesis of mechatronic systems based on bond graphs and genetic programming. This classical inverse problem shares characteristics with many other system synthesis problems, such as electric circuit and controller synthesis, in terms of epistasis and multi-modality of the search space. Critical issues of open-ended topology search by genetic programming are investigated, including encoding, population seeding, scalability and evolvability. For the eigenvalue problems, we have found there exists a correlation between structure and function that is important for efficient topology search. Standard genetic programming has been used to solve up to 20-eigen-value problems, finding the target system of bush topology out of 823,065 possibilities with only 29506 topology evaluations.

Published in:

American Control Conference, 2004. Proceedings of the 2004  (Volume:6 )

Date of Conference:

June 30 2004-July 2 2004