By Topic

Distributed Bayesian hypothesis testing in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Alanyali ; Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA ; S. Venkatesh ; O. Savas ; S. Aeron

We consider the scenario of N distributed noisy sensors observing a single event. The sensors are distributed and can only exchange messages through a network. The sensor network is modelled by means of a graph, which captures the connectivity of different sensor nodes in the network. The task is to arrive at a consensus about the event after exchanging such messages. The focus of this paper is twofold: a) characterize conditions for reaching a consensus; b) derive conditions for when the consensus converges to the centralized MAP estimate. The novelty of the paper lies in applying belief propagation as a message passing strategy to solve a distributed hypothesis testing problem for a pre-specified network connectivity. We show that the message evolution can be re-formulated as the evolution of a linear dynamical system, which is primarily characterized by network connectivity. This leads to a fundamental understanding of as to which network topologies naturally lend themselves to consensus building and conflict avoidance.

Published in:

American Control Conference, 2004. Proceedings of the 2004  (Volume:6 )

Date of Conference:

June 30 2004-July 2 2004