By Topic

Power distribution control coordinating ultracapacitors and batteries for electric vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ozatay, E. ; Dept. of Mech. & Nucl. Eng., Pennsylvania State Univ., PA, USA ; Zile, B. ; Anstrom, J. ; Brennan, S.

Electrical energy storage is a central element to any electric-drivetrain technology - whether hybrid-electric, fuel-cell, or all-electric. A particularly cost-sensitive issue with energy storage is the high replacement cost of depleted battery banks. One possibility to ease the power burden on batteries and fuel cells is to use ultra-capacitors as load-leveling devices. The high power density of ultra-capacitors allows a significant reduction in the power fluctuations imposed on the remaining electrical system; however, the same ultra-capacitors have a very low energy density and therefore must be used sparingly and with coordination. A control strategy for coordinated power distribution is a central issue for ultracapacitor-supported systems. Toward this end, several control methods are implemented on an electric vehicle equipped with a battery/ultracapacitor system with the goal of improving battery life and overall vehicle efficiency. A particular goal is to obtain both a peaking load control and a frequency-weighted coordination between capacitor and battery in order to mitigate transients in the battery current demand. A key control design issue is that the control objectives vary with respect to vehicle velocity, driver's power demand, and state-of-charge of both the batteries and ultracapacitors.

Published in:

American Control Conference, 2004. Proceedings of the 2004  (Volume:5 )

Date of Conference:

June 30 2004-July 2 2004