By Topic

A model predictive control strategy for supply chain management in semiconductor manufacturing under uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenlin Wang ; Dept. of Chem. & Mater. Eng., Arizona State Univ., Tempe, AZ, USA ; Rivera, D.E. ; Kempf, K.G. ; Smith, K.D.

Model predictive control (MPC) is presented as a tactical decision module for supply chain management in semiconductor manufacturing. A representative problem which includes distinguishing features of semiconductor manufacturing supply chains, such as material reconfiguration and stochastic product splits, is examined. Fluid analogies are used to model the supply chain dynamics, with stochasticity and nonlinearity occurring on the throughput time, yield and customer demand. Given inventory targets and capacity limits, MPC using linear time invariant models can make the system outputs track the targets and improve customer service levels. The flexibility provided by the choice of tuning parameters in MPC to achieve better performance and robustness in semiconductor manufacturing supply chain management is demonstrated.

Published in:

American Control Conference, 2004. Proceedings of the 2004  (Volume:5 )

Date of Conference:

June 30 2004-July 2 2004