By Topic

A decentralized algorithm for robust constrained model predictive control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Richards ; Aerosp. Control Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA ; J. How

A decentralized formulation is presented for model predictive control of systems with coupled constraints. The single large planning optimization is divided into small subproblems, each planning only for the states of a particular subsystem. Relevant plan data is exchanged between subsystems to ensure that all decisions are consistent with satisfaction of the coupled constraints. A typical application would be autonomous guidance of a fleet of UAVs, in which the systems are coupled by the need to avoid collisions, but each vehicle plans only its own path. The key property of the algorithm in this paper is that if an initial feasible plan can be found, then all subsequent optimizations are guaranteed to be feasible, and hence the constraints will be satisfied, despite the action of unknown but bounded disturbances. This is demonstrated in simulated examples, also showing the associated benefit in computation time.

Published in:

American Control Conference, 2004. Proceedings of the 2004  (Volume:5 )

Date of Conference:

June 30 2004-July 2 2004