By Topic

Detecting motor bearing faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. J. Devaney ; Missouri Univ., Columbia, MO, USA ; L. Eren

Three-phase induction motors are the workhorses of industry because of their widespread use. They are used extensively for heating, cooling, refrigeration, pumping, conveyors, and similar applications. They offer users simple, rugged construction, easy maintenance, and cost-effective pricing. These factors have promoted standardization and development of a manufacturing infrastructure that has led to a vast installed base of motors; more than 90% of all motors used in industry worldwide are ac induction motors. Causes of motor failures are bearing faults, insulation faults, and rotor faults. Early detection of bearing faults allows replacement of the bearings, rather than replacement of the motor. The same type of bearing defects that plague such larger machines as 100 hp are mirrored in lower hp machines which has the same type of bearings. Even though the replacement of defective bearings is the cheapest fix among the three causes of failure, it is the most difficult one to detect. Motors that are in continuous use cannot be stopped for analysis. We have developed a circuit monitor for these motors. Incipient bearing failures are detectable by the presence of characteristic machine vibration frequencies associated with the various modes of bearing failure. We will show that circuit monitors that we developed can detect these frequencies using wavelet packet decomposition and a radial basis neural network. This device monitors an induction motor's current and defines a bearing failure.

Published in:

IEEE Instrumentation & Measurement Magazine  (Volume:7 ,  Issue: 4 )