By Topic

Uncovering Clusters in Crowded Parallel Coordinates Visualizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Artero, A.O. ; Dept. of Comput. Sci., Sao Paulo Univ. ; de Oliveira, M.C.F. ; Levkowitz, H.

The one-to-one strategy of mapping each single data item into a graphical marker adopted in many visualization techniques has limited usefulness when the number of records and/or the dimensionality of the data set are very high. In this situation, the strong overlapping of graphical markers severely hampers the user's ability to identify patterns in the data from its visual representation. We tackle this problem here with a strategy that computes frequency or density information from the data set, and uses such information in parallel coordinates visualizations to filter out the information to be presented to the user, thus reducing visual clutter and allowing the analyst to observe relevant patterns in the data. The algorithms to construct such visualizations, and the interaction mechanisms supported, inspired by traditional image processing techniques such as grayscale manipulation and thresholding are also presented. We also illustrate how such algorithms can assist users to effectively identify clusters in very noisy large data sets

Published in:

Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on

Date of Conference:

0-0 0