By Topic

Design and analysis of a dynamic scheduling strategy with resource estimation for large-scale grid systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Viswanathan ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; B. Veeravalli ; Dantong Yu ; T. G. Robertazzi

In this paper, we present a resource conscious dynamic scheduling strategy for handling large volume computationally intensive loads in a grid system involving multiple sources and sinks/processing nodes. We consider a "pull-based" strategy, wherein the processing nodes request load from the sources. We employ the Incremental Balancing Strategy (IBS) algorithm proposed in the literature and propose a buffer estimation strategy to derive optimal load distribution. We consider nontime critical loads that arrive at arbitrary times with time varying buffer availability at sinks and utilize buffer reclamation techniques so as to schedule the loads. We demonstrate detailed workings of the proposed algorithm with illustrative examples using real-life parameters derived from STAR experiments in BNL for scheduling large volume loads.

Published in:

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on

Date of Conference:

8 Nov. 2004