By Topic

Techniques for improving the accuracy of geometric-programming based analog circuit design optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jintae Kim ; Dept. of Electr. Eng., Californica Univ., Los Angeles, CA, USA ; Jaeseo Lee ; Vandenberghe, L. ; Yang, C.-K.K.

We present techniques for improving the accuracy of geometric-programming (GP) based analog circuit design optimization. We describe major sources of discrepancies between the results from optimization and simulation, and propose several methods to reduce the error. Device modeling based on convex piecewise-linear (PWL) function fitting is introduced to create accurate active and passive device models. We also show that in selected cases GP can enable nonconvex constraints such as bias constraints using monotonicity, which help reduce the error. Lastly, we suggest a simple method to take the modeling error into account in GP optimization, which results in a robust design over the inherent errors in GP device models. Two-stage operational amplifier and on-chip spiral inductor designs are given as examples to demonstrate the presented ideas.

Published in:

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2004