Cart (Loading....) | Create Account
Close category search window
 

Clock schedule verification under process variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruiming Chen ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Hai Zhou

With aggressive scaling down of feature sizes in VLSI fabrication, process variations have become a critical issue in designs, especially for high-performance ICs. Usually having level-sensitive latches for their speed, high-performance IC designs need to verify the clock schedules. With process variations, the verification needs to compute the probability of correct clocking. Because of complex statistical correlations, traditional iterative approaches are difficult to get accurate results. Instead, a statistical checking of the structural conditions for correct clocking is proposed, where the central problem is to compute the probability of having a positive cycle in a graph with random edge weights. The proposed method only traverses the graph once to avoid the correlations among iterations, and it considers not only data delay variations but also clock skew variations. Experimental results showed that the proposed approach has an error of 0.14% on average in comparisons with the Monte Carlo simulations.

Published in:

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.