By Topic

Delay noise pessimism reduction by logic correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
A. Glebov ; Microstyle, Moscow, Russia ; S. Gavrilov ; R. Soloviev ; V. Zolotov
more authors

High-performance digital circuits are facing increasingly severe signal integrity problems due to crosstalk noise and therefore the state-of-the-art static timing analysis (STA) methods consider crosstalk-induced delay variation. Current noise-aware STA methods compute noise-induced delay uncertainty for each net independently and annotate appropriate delay changes of nets onto data paths and associated clock paths to determine timing violations. Since delay changes in individual nets contribute cumulatively to delay changes of paths, even small amounts of pessimism in noise computation of nets can add up to produce large timing violations for paths, which may be unrealistic. Unlike glitch noise analysis where noise often attenuates during propagation, quality of delay noise analysis is severely affected by any pessimism in noise estimation and can unnecessarily cost valuable silicon and design resources for fixing unreal violations. In this paper, we propose a method to reduce pessimism in noise-aware STA by considering signal correlations of all nets associated with an entire timing path simultaneously, in a path-based approach. We first present an exact algorithm based on the branch-and-bound technique and then extend it with several heuristic techniques so that very large industrial designs can be analyzed efficiently. These techniques, which are implemented in an industrial crosstalk noise analysis tool, show as much as 75% reduction in the computed path delay variations.

Published in:

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2004