By Topic

A parallel evolutionary programming based optimal power flow algorithm and its implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lo, C.H. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; Chung, C.Y. ; Nguyen, D.H.M. ; Wong, K.P.

This paper develops a parallel evolutionary programming based optimal power flow solution algorithm. The proposed approach is less sensitive to the choice of starting points and types of generator cost curves. To improve the robustness and speed of convergence of the algorithm, population and gradient acceleration techniques are incorporated. The developed algorithm is implemented on a thirty-six-processor Beowulf cluster. The proposed approach has been tested on the IEEE 118-bus system under master-slave, dual-direction ring and 2D-mesh topologies. Computational speedup and generation costs for each parallel topology with different number of processors are then compared to those of the sequential EP approach.

Published in:

Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on  (Volume:4 )

Date of Conference:

26-29 Aug. 2004