By Topic

Effect of partially correlated data on clustering in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lotfinezhad, M. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Ben Liang

In wireless sensor networks, clustering allows the aggregation of sensor data. It is well known that leveraging the correlation between different samples of the observed data will lead to better utilization of energy reserve. However, no previous work has analyzed the effect of non-ideal data aggregation in multi-hop sensor networks. In this paper, we propose a novel analytical framework to study how partially correlated data affect the performance of clustering algorithms. We analyze the behavior of multi-hop routing and, by combining random geometry techniques and rate distortion theory, predict the total energy consumption and network lifetime. We show that when a moderate amount of correlation is available, the optimal probabilities that lead to minimum energy consumption are far from optimality in terms of network lifetime. In addition, we study the sensitivity of the total energy consumption and network lifetime to the amount of correlation and compression distortion constraint.

Published in:

Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on

Date of Conference:

4-7 Oct. 2004