By Topic

Benes switching fabrics with O(N)-complexity internal backpressure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Sapountzis ; Dept. of Comput. Sci., Crete Univ., Greece ; M. Katevenis

Multistage buffered switching fabrics are the most efficient method for scaling packet switches to very large numbers of ports. The Benes network is the lowest-cost switching fabric known to yield operation free of internal blocking. Backpressure inside a switching fabric can limit the use of expensive off-chip buffer memory to just virtual-output queues in front of the input stage. This article extends the known credit-based flow control (backpressure) architectures to the Benes network. To achieve this, we had to successfully combine per-flow backpressure, multipath routing (inverse multiplexing), and cell resequencing. We present a flow merging scheme that is needed to bring the cost of backpressure down to O(N) per switching element, and for which we have proved freedom from deadlock for a wide class of multipath cell distribution algorithms. Using a cell-time-accurate simulator, we verify operation free of internal blocking, evaluate various cell distribution and resequencing methods, compare performance to that of ideal output queuing, the iSLIP crossbar scheduling algorithm, and adaptive and randomized routing, and show that the delay of well-behaved flows remains unaffected by the presence of congested traffic to oversubscribed output ports.

Published in:

IEEE Communications Magazine  (Volume:43 ,  Issue: 1 )