By Topic

Adaptation of TS fuzzy models without complexity expansion: HOSVD-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baranyi, P. ; Comput. & Autom. Res. Inst., Hungarian Acad. of Sci., Budapest, Hungary ; Varkonyi-Koczy, A.R. ; Yeung Yam ; Patton, R.J.

One direction of measured data-set based modeling applies fuzzy logic identification tools and results in a fuzzy rule-base model. A typical problem of fuzzy identification methods is that the complexity of the resulting fuzzy rule-base, namely the number of rules in the rule-base, explodes with the modeling accuracy. As a result, the topic of fuzzy rule-base complexity reduction techniques emerged in the last decade. A common disadvantage of fuzzy rule-base complexity reduction methods is that the resulting complexity minimized fuzzy-rule bases cannot be simply adapted to new information. If we have new information that cannot be described by the fuzzy rules of the complexity minimized fuzzy rule-base, then we have two choices. The first choice is to add new fuzzy rules to the fuzzy rule-base until the new information can be described. The second choice is to modify the new information until it can be described by the fuzzy rule-base without using additional fuzzy rules. This second case has the prominent role if the number of fuzzy rules in the fuzzy rule-base is limited. This paper proposes a method for the second choice. The proposed method minimizes the necessary modification of the new information. This paper focuses attention on a recent complexity reduction method, termed Higher Order Singular Value Decomposition (HOSVD)-based complexity reduction, and Takagi-Sugeno (TS) inference operator-based fuzzy rule-bases. An example is used to provide the validation of the proposed method. In order to demonstrate the effectiveness of the proposed method, a control system of a differential-steered automatic guided vehicle is modeled in the paper.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:54 ,  Issue: 1 )