By Topic

Auxiliary antenna-assisted interference mitigation for radio astronomy arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jeffs, B.D. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; Li, L. ; Warnick, Karl F.

Interferometric image synthesis in radio astronomy is plagued by signal corruption from man-made sources. The very weak signals of interest can be overwhelmed by such interference. Recent work has proposed using array signal processing techniques of adaptive beamforming, adaptive filtering, and subspace projection to remove interference prior to image synthesis. In some practical scenarios, we have found poor cancellation performance when using such methods. Because signal-of-interest levels in radio astronomy (RA) are usually well below the noise, even interference to noise ratios (INR) less than unity can affect signal estimation. At these low INRs, it is difficult to estimate interference parameters or statistics with sufficient accuracy for high-performance adaptive cancellation or subspace projection. By adding a few (one to three) low-gain (relative to the primary telescope dishes) "auxiliary" antennas to an array, it is possible to overcome this problem. This paper will show that using such antennas (e.g. commercial-grade 3-m dishes) with an existing array can significantly improve interference rejection. New extensions to subspace projection spatial filtering methods are presented, along with analytical and simulated results for performance comparison.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 2 )