By Topic

Large-scale broad-band parasitic extraction for fast layout verification of 3-D RF and mixed-signal on-chip structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Feng Ling ; Cadence Design Syst. Inc., Tempe, AZ, USA ; Okhmatovski, V.I. ; Harris, W. ; McCracken, S.
more authors

A methodology for efficient parasitic extraction and verification flow for RF and mixed-signal integrated-circuit designs is presented. The implementation of a multiplane precorrected fast Fourier transform (PFFT) computational engine enables the full-wave electromagnetic (EM) simulation of interconnects and passive components. The PFFT algorithm is implemented on a set of two-dimensional fast Fourier transform grids associated with the current sheets corresponding to the conductor loss models. This leads to the full-wave modeling of silicon embedded three-dimensional circuits within the two-and-one-half-dimensional computational framework yielding the O(NlogN) computational complexity and O(N) memory requirements of the algorithm. The broad-band capability of the EM solver is provided through the loop-tree/charge implementation of the PFFT algorithm allowing for robust full-wave modeling from dc to microwaves. The EM verification flow is integrated seamlessly within the Cadence environment allowing for the nonlinear circuit simulation of the entire device. The capability and accuracy of the proposed methodology is demonstrated through EM simulation results for an individual on-chip spiral inductor, as well as a low-noise amplifier.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 1 )