By Topic

Integrated interconnect networks for RF switch matrix applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. Daneshmand ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; R. R. Mansour ; P. Mousavi ; Savio Choi
more authors

In this paper, two new types of integrated RF interconnect networks are presented. The circuits are printed on double-sided alumina substrates, eliminating the need to use multilayer manufacturing technology. The interconnect networks employ finite ground coplanar lines and vertical transitions and can be easily integrated with semiconductor and microelectromechanical-systems switches. A wide-band 3×3 interconnect network utilizing single and double three-via vertical transitions is investigated theoretically and experimentally. The measured results show a return loss of -20dB and an isolation of better than -40dB up to 30 GHz. A vialess double-sided interconnect network is also studied and optimized for satellite Ku-band applications. This type of interconnect network uses a process requiring only front and back pattern metallization. The measured results indicate a return loss of better than -17dB and an isolation of better than -45dB.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:53 ,  Issue: 1 )