Cart (Loading....) | Create Account
Close category search window
 

Thermal management and resistive rail heating of a large-scale naval electromagnetic launcher

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Smith, A.N. ; Mech. Eng. Dept., U.S. Naval Acad., Annapolis, MD, USA ; Ellis, R.L. ; Bernardes, J.S. ; Zielinski, A.E.

This work presents a model that can be implemented to quickly estimate the resistive heating and the resulting transient temperature response. Quantifying the energy deposited in the rails and implementing an effective thermal management system will be key elements of an effective design for a large-scale electromagnetic launcher. The total current was divided between the inside, upper/lower, and outside surface based on the results of a current distribution calculation. The diffusion of the magnetic field into each surface was modeled in order to determine the current distribution and the resistive heating. Cooling between shots was taken into account by solving the one dimensional transient heat diffusion equation within each surface. Repeating these calculations for a number of discrete segments down the length of the rail enabled the prediction of the total resistive rail heating and the temperature profile along the length of the rail. Experimental tests were conducted that verify the presence of localized heating in the corners of a U-shaped conductor made of 7075 Aluminum. Taking into account the localized resistive heating near the surface of the conductor will become increasingly important with large-scale guns.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.