By Topic

State-periodic adaptive compensation of cogging and Coulomb friction in permanent-magnet linear motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyo-Sung Ahn ; Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA ; Yang Quan Chen ; Huifang Dou

This paper focuses on the state-periodic adaptive compensation of cogging and Coulomb friction for permanent-magnet linear motors (PMLMs) executing a task repeatedly. The cogging force is considered as a position-dependent disturbance and the Coulomb friction is non-Lipschitz at zero velocity. The key idea of our disturbance compensation method is to use past information for one trajectory period along the state axis to update the current adaptation law. The new method consists of three different steps: 1) in the first repetitive trajectory, an adaptive compensator is designed to guarantee the l2-stability of the overall system; 2) from the second repetitive trajectory and onward, a trajectory-periodic adaptive compensator stabilizes the system; and 3) to make use of the stored past state-dependent cogging information, a search process is utilized for adapting the current cogging coefficient. We illustrate the validity of our state-periodic adaptive cogging and friction compensator by actual PMLM-model-based simulation.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )