By Topic

On the multidimensional extension of the quincunx subsampling matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van De Ville, D. ; Biomed. Imaging Group, Swiss Fed. Inst. of Technol. Lausanne, Switzerland ; Blu, T. ; Unser, M.

The dilation matrix associated with the three-dimensional (3-D) face-centered cubic (FCC) sublattice is often considered to be the natural 3-D extension of the two-dimensional (2-D) quincunx dilation matrix. However, we demonstrate that both dilation matrices are of different nature: while the 2-D quincunx matrix is a similarity transform, the 3-D FCC matrix is not. More generally, we show that is impossible to obtain a dilation matrix that is a similarity transform and performs downsampling of the Cartesian lattice by a factor of two in more than two dimensions. Furthermore, we observe that the popular 3-D FCC subsampling scheme alternates between three different lattices: Cartesian, FCC, and quincunx. The latter one provides a less isotropic sampling density, a property that should be taken into account to properly orient 3-D data before processing using such a subsampling matrix.

Published in:

Signal Processing Letters, IEEE  (Volume:12 ,  Issue: 2 )