By Topic

Highly efficient techniques for mitigating the effects of multipath propagation in DS-CDMA delay estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lohan, E.S. ; Inst. of Commun. Eng., Tampere Univ. of Technol., Finland ; Hamila, R. ; Lakhzouri, A. ; Renfors, M.

Delay estimation in direct-sequence code-division multiple-access (DS-CDMA) systems is necessary for accurate code synchronization and for applications such as mobile phone positioning. Multipath propagation is among the main sources of error in the DS-CDMA delay estimation process, together with multiple access interference and non-line-of-sight (NLOS) propagation. This paper provides a review of main delay estimation techniques, existing in the literature so far, which are able to cope with multipath propagation, together with our novel delay estimation techniques proposed in the context of DS-CDMA systems. The performance of all these techniques is compared through analysis and simulations, considering also their relative computational complexity and required prior information. Starting from the traditional delay locked loops (DLL) and their improved variants, we discuss several recently introduced delay estimation techniques able to cope with multipath propagation. The characterization of these methods is given in a unified framework, suited for both rectangular and root raised cosine pulse shapes. The main focus in the performance comparison of the algorithms is on the closely-spaced multipath scenario, since this situation is the most challenging for achieving diversity gain with low delay spreads and for estimating LOS component with high accuracy in positioning applications.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 1 )