By Topic

Max-utility wireless resource management for best-effort traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Due to the characteristics of wireless channels, utility-based resource management in wireless networks requires a set of mechanisms that are different from those for wireline networks. This paper explores in detail why and how the requirements are different. In particular, we analyze the wireless network performance to find out the scheduling algorithm that maximizes total utility of the system. Unlike previous studies, this paper focuses on scenarios in which wireless networks are not fully loaded and all of the users are best-effort data users, i.e., there is no streaming user. Our first key conclusion is that Kleinrock's Conservation Law provides a valuable means to accurately capture the perceived rates of best-effort users in such systems. The queueing analysis further indicates that, within periods during which channel conditions are stable for each user, albeit differ from user to user, the max-utility scheduling algorithm can be derived using queueing theorem and can be readily implemented in actual systems for utility functions that are of exponential or log format. When further taking into account the time-variant nature of wireless channel conditions, our simulation results demonstrate that dynamic weighted fair queueing, with weights adjusted according to the channel conditions, can achieve highly desirable performance with great flexibility.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 1 )