By Topic

Intercomparison of deep convective cloud fractions from passive infrared and microwave radiance measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gang Hong ; Inst. of Environ. Phys., Univ. of Bremen, Germany ; Heygster, G. ; Kunzi, K.

The common method to detect deep convective clouds is from satellite infrared (IR) measurements, which is based on thresholds of cloud-top temperatures. However, thick cirrus clouds with high cloud tops are difficult to screen out using IR methods, resulting in an overestimation of deep convective cloud fractions. Two aircraft cases with simultaneous Millimeter-wave Imaging Radiometer, Multispectral Atmospheric Mapping Sensor, and ER-2 Doppler radar measurements during the Convection and Moisture Experiment 3 in August 1998 are analyzed to investigate the influence of high thick cirrus clouds on two previously developed IR methods. In contrast, a microwave method based on the brightness temperature differences between the three water vapor channels around 183.3 GHz of the Advanced Microwave Sounding Unit-B (AMSU-B) (183.3/spl plusmn/1,183.3/spl plusmn/3, and 183.3/spl plusmn/7 GHz) can screen out high thick cirrus clouds efficiently. The tropical deep convective cloud fractions (30/spl deg/S-30/spl deg/N) estimated by the IR methods and the AMSU-B method are compared. Although their geographical distributions are in well agreement with each other, the total fractions detected by the IR methods are about 2-3.5 times greater than that detected by the AMSU-B method. Moreover, the overestimation of deep convective cloud fractions by the IR method (11-μm brightness temperature less than 215 K) can result in a displacement in the detected location of the deep convective clouds. The average thick cirrus clouds cover 2.5 times the area of the deep convective clouds that generates them.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:2 ,  Issue: 1 )