By Topic

An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Caorsi, S. ; Dept. of Electron., Univ. of Pavia, Italy ; Cevini, G.

In this letter, neural networks (NNs) are used to reconstruct the geometric and dielectric characteristics of buried cylinders. The NN is designed to work with input data extracted from the transient electric fields scattered by the target. To this aim, a simple simulation of a typical ground-penetrating radar setting is performed and different sets of data examined. Moreover, different neural network algorithms have been exploited, and results have been compared. Finally, the "robustness" of the proposed approach has been tested against noisy data and against uncertainties in the modelization.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:2 ,  Issue: 1 )