By Topic

Design style case study for embedded multi media compute nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)

Users expect future handheld devices to provide extended multimedia functionality and have long battery life. This type of application imposes heavy constraints on both (realtime) performance and energy consumption and forces designers to optimise all parts of their platform. In this experiment we focus on the different processor core design options for embedded platforms, including the effect of instruction memory hierarchy on the energy consumption. The results show that significant improvements for energy efficiency and/or performance over currently used RISC or VLIW processors can be achieved. We conclude, based on concrete data for a realistic application, that different styles, including both configurable hardware and instruction set processors, find their way into heterogeneous platforms and designers need to be aware of the trade-offs. Secondly, we show for the same application task that a heavily optimised instruction/configuration memory hierarchy can significantly reduce the energy consumption of this part, so it forms a crucial part of every energy aware design.

Published in:

Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE International

Date of Conference:

5-8 Dec. 2004