Cart (Loading....) | Create Account
Close category search window
 

Compositional real-time scheduling framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Insik Shin ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; Insup Lee

Our goal is to develop a compositional real-time scheduling framework so that global (system-level) timing properties can be established by composing independently (specified and) analyzed local (component-level) timing properties. The two essential problems in developing such a framework are: (1) to abstract the collective real-time requirements of a component as a single real-time requirement and (2) to compose the component demand abstraction results into the system-level real-time requirement. In our earlier work, we addressed the problems using the Liu and Layland periodic model. In this paper, we address the problems using another well-known model, a bounded-delay resource partition model, as a solution model to the problems. To extend our framework to this model, we develop an exact feasibility condition for a set of bounded-delay tasks over a bounded-delay resource partition. In addition, we present simulation results to evaluate the overheads that the component demand abstraction results incur in terms of utilization increase. We also present utilization bound results on a bounded-delay resource model.

Published in:

Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE International

Date of Conference:

5-8 Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.