By Topic

Kernel-based canonical coordinate decomposition of two-channel nonlinear maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pezeshki, A. ; Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA ; Azimi-Sadjadi, M.R. ; Scharf, L.L.

A kernel-based formulation for decomposing nonlinear maps of two data channels into their canonical coordinates is derived. Each data channel is implicitly mapped to a high dimensional feature space defined by a nonlinear kernel. The canonical coordinates of the nonlinear maps are then found by transforming the kernel maps with the eigenvector matrices of a coupled asymmetric generalized eigenvalue problem. This generalized eigenvalue problem is constructed in the explicit space of kernel maps. The measures of linear dependence and coherence between the nonlinear maps of the channels are also presented. These measures may be determined in the kernel domain, without explicit computation of the nonlinear mappings. A numerical example is also presented.

Published in:

Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on  (Volume:4 )

Date of Conference:

25-29 July 2004