By Topic

A novel subspace LDA algorithm for recognition of face images with illumination and pose variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Huang ; Dept. of Comput. Sci., Hong Kong Baptist Univ., China ; Yuen, P.C. ; Wen-Sheng Chen

This paper addresses two LDA problems in face recognition. The first one is small sample size (S3) problem while the second is illumination and pose variations. To overcome the S3 problem, this paper proposes a new method in subspace approach in determining the optimal projection for LDA. Also, an in-depth investigation is conducted on the influence of different illuminations and poses variations. Comparisons with existing LDA-based methods are performed using FERET and Yale Group B face databases. The experimental results show that the proposed method gives the best performance comparing with the existing LDA-based methods for both databases. Moreover, the computational cost of the proposed method is near the same as the existing fastest LDA-based method.

Published in:

Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on  (Volume:6 )

Date of Conference:

26-29 Aug. 2004