By Topic

Time series prediction with recurrent neural networks using a hybrid PSO-EA algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xindi Cai ; Dept. of Electr. & Comput. Eng., Missouri-Rolla Univ., Rolla, MO, USA ; Nian Zhang ; Venayagamoorthy, G.K. ; Wunsch, D.C.

To predict the 100 missing values from the time series consisting of 5000 data given for the IJCNN 2004 time series prediction competition, we applied an architecture which automates the design of recurrent neural networks using a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of particle swarm optimization (PSO) and evolutionary algorithm (EA). By combining the searching abilities of these two global optimization methods, the evolution of individuals is no longer restricted to be in the same generation, and better performed individuals may produce offspring to replace those with poor performance. The novel algorithm is then applied to the recurrent neural network for the time series prediction. The experimental results show that our approach gives good performance in predicting the missing values from the time series.

Published in:

Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on  (Volume:2 )

Date of Conference:

25-29 July 2004