By Topic

A robust kernel PCA algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cong-De Lu ; Dept. of Inf. & Commun. Eng., Xi''an Jiaotong Univ., China ; Tai-Yi Zhang ; Xing-Zhong Du ; Can-Ping Li

This paper presents a novel algorithm - robust kernel principal component analysis (robust KPCA), on the basis of the research of kernel principal component analysis (KPCA) and robust principal component analysis (RPCA). First, this algorithm sets the radius of the images of the training samples in the feature space using kernel tricks, then determines whether the samples are outliers or not, and finally analyzes the training samples which have eliminated the outliers using KPCA algorithm. The improved KPCA algorithm not only retains the non-linearity property of KPCA algorithm but also gets better robustness. Because the effects of outliers are eliminated, robust KPCA algorithm gets higher accuracy than KPCA algorithm for data analysis. The simulation experiments show that the robust KPCA algorithm developed is better than the KPCA algorithm.

Published in:

Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on  (Volume:5 )

Date of Conference:

26-29 Aug. 2004