Cart (Loading....) | Create Account
Close category search window
 

Distributed algorithms for maximum lifetime routing in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Madan, R. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Lall, S.

A sensor network of nodes with wireless transceiver capabilities and limited energy is considered. We propose distributed algorithms to compute an optimal routing scheme that maximizes the time at which the first node in the network drains out of energy. The problem is formulated as a linear programming problem and subgradient algorithms are used to solve it in a distributed manner. The resulting algorithms have low computational complexity and are guaranteed to converge to an optimal routing scheme that maximizes the network lifetime. The algorithms are illustrated by an example in which an optimal flow is computed for a network of randomly distributed nodes.

Published in:

Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE  (Volume:2 )

Date of Conference:

29 Nov.-3 Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.