By Topic

Redesigning an active queue management system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Agrawal, D. ; Dept. of Inf. & Commun. Technol., Univ. of Trento, Italy ; Granelli, F.

A robust proportional-integral-derivative (PID) controller is proposed for active queue management (AQM). A linear quadratic regulator (LQR) method is used to design the controller, named LQR-PID. LQR is a robust design technique as compared to classical gain-and-phase margin and dominant pole placement methods. The LQR-PID controller marks the packets according to queue length with a probability and notifies congestion to sources; in turn, sources adjust their send rate, thus maintaining queue length at the desired level in bottleneck routers. By maintaining queue length at the desired level, delay can be predicted and quality of service can be provided. Simulation results demonstrate the robustness and superiority of LQR-PID AQM as compared with other AQM schemes in the literature.

Published in:

Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE  (Volume:2 )

Date of Conference:

29 Nov.-3 Dec. 2004