Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A new prediction method of alpha-stable processes for self-similar traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Ge Xiaohu ; Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Hubei, China ; Shaokai Yu ; Won-Sik Yoon ; Yong-Deak Kim

Because the self-similar processes have an infinite variance, the prediction method cannot be derived from the covariance. However, in the alpha-stable processes the covariation can be used to substitute the role of the covariance. Based on the theory of alpha-stable processes, a simple unbiased linear prediction method is developed for self-similar network traffic. The prediction method can be derived from the property of the covariation, and the prediction coefficients are solved from the cross-covariation matrix. The covariation orthogonality criterion ensures that the procedure of the prediction method is efficient and simple. The simulation experiments show that the new prediction method is able to predict the changes of the self-similar network traffic, especially in forecasting the bursty changes. As a result, this method can be used for network design so as to avoid network congestion.

Published in:

Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE  (Volume:2 )

Date of Conference:

29 Nov.-3 Dec. 2004