By Topic

Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Erentok ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; P. L. Luljak ; R. W. Ziolkowski

The design, fabrication and measurement of a volumetric metamaterial realization of an artificial magnetic conductor (AMC) is presented. In contrast to most current realizations of AMCs, such as the mushroom and the uniplanar compact photonic bandgap surfaces, the present design has no perfect electric conductor ground plane. The perfect magnetic conductor properties were designed with capacitively loaded loops for X band operation at 10 GHz. Very good agreement between the numerical and experimental scattering results was achieved. The performance of a dipole antenna radiating in the presence of this volumetric metamaterial AMC is quantified numerically. Resonant interactions of the antenna and metamaterial structure lead to a significant enhancement of the radiated field amplitudes and isolation measured as the front-to-back ratio.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:53 ,  Issue: 1 )