By Topic

Semi-blind identification of ARMA systems using a dynamic-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Di He ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada ; Leung, H.

A novel dynamic-based semi-blind approach is proposed to identify an autoregressive and moving average (ARMA) system in this paper. By using a chaotic driving signal, an ARMA system can be identified accurately by a dynamic-based estimation method called the ergodic-based minimum phase space volume (EMPSV). A maximum-likelihood formulation of EMPSV is provided to certify its unbiasedness and asymptotical efficiency. Monte Carlo simulations show that the EMPSV approach has a smaller mean-square error performance than the minimum phase space volume method and the conventional identification approach based on least-squares estimation with white Gaussian probing signals. The proposed approach is then applied to blind deconvolution of real audio signals and semi-blind channel equalization for chaos communications. It is shown that the EMPSV approach has improved deconvolution and equalization performances compared to conventional techniques in both applications.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 1 )